## Heegermaterials

Heeger Materials Inc 230 Steele St Denver Co 95050 USA www.heegermaterials.com



## **Thin Film Evaporation Guide**

Phone: 925-385-8104

E-mail: sales@heegermaterials.com

| Material                    | Symbol                          | Melting          | Density       | Z-ratio | ٦<br>°C @ Va     | lemperatur<br>por Pressu | e<br>ire (Torr) | Evaporation  | Crucible                                                        | Remarks                                                                                                             |
|-----------------------------|---------------------------------|------------------|---------------|---------|------------------|--------------------------|-----------------|--------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
|                             | eyse.                           | Point °C         | (bulk, g/cm³) |         | 10 <sup>-8</sup> | <b>10</b> <sup>-6</sup>  | 10-4            | Method       | Liner                                                           |                                                                                                                     |
| Aluminum                    | AI                              | 660              | 2.7           | 1.08    | 677              | 821                      | 1010            | eBeam (XInt) | TiB <sub>2</sub> -TiC,<br>TiB <sub>2</sub> -BN,<br>graphite, BN | High deposition rates possible. Al wets IMCS                                                                        |
| Aluminum<br>Antimonide      | AISb                            | 1080             | 4.3           | _       | _                | _                        | _               | eBeam (fair) | TiB <sub>2</sub> -BN, BN, C,<br>Al <sub>2</sub> O <sub>3</sub>  | Co-evaporation is the best approach                                                                                 |
| Aluminum<br>Arsenide        | AIAs                            | 1600             | 3.7           | _       | _                | _                        | ~1300           | eBeam (poor) | TiB <sub>2</sub> -BN, BN,<br>Al <sub>2</sub> O <sub>3</sub>     | Co-evaporation can work but typically<br>done with MBE                                                              |
| Aluminum<br>Bromide         | AlBr <sub>3</sub>               | 97               | 3.01          | -       |                  | —                        | ~50             | eBeam (poor) | graphite, W                                                     | eBeam or thermal evaporation of anhydrous AIBr <sub>3</sub> powder                                                  |
| Aluminum<br>Carbide         | $Al_4C_3$                       | 1400             | 2.36          | _       | _                | _                        | ~800            | eBeam (fair) | graphite, W                                                     | eBeam evaporation from powder, but<br>CVD is a better approach                                                      |
| Aluminum<br>2% Copper       | Al2%Cu                          | 640              | 2.8           | _       | _                | _                        | _               | eBeam (fair) | TiB <sub>2</sub> -TiC, BN                                       | eBeam evaporation of Al-Cu alloys is<br>possible, but sputter deposition is a<br>better approach                    |
| Aluminum<br>Fluoride        | AIF <sub>3</sub>                | 1257<br>sublimes | 3.07          | _       | 410              | 490<br>sublimes          | 700             | eBeam (fair) | graphite, Mo, W                                                 | Films tend to be porous, but smooth                                                                                 |
| Aluminum<br>Nitride         | AIN                             | —<br>sublimes    | 3.26          | _       | _                | _                        | ~1750           | eBeam (fair) | TiB <sub>2</sub> -TiC,<br>graphite, BN                          | Reactive evaporation of Al in N <sub>2</sub> or ammonia partial pressure                                            |
| Aluminum<br>Oxide (Alumina) | $Al_2O_3$                       | 2045             | 3.97          | 0.336   | _                | _                        | 1550            | eBeam (XInt) | W, graphite                                                     | Swept beam with low deposition rates (< 3 Å/sec)                                                                    |
| Aluminum<br>2% Silicon      | Al2%Si                          | 640              | 2.6           | _       | _                | _                        | 1010            | eBeam (fair) | TiB <sub>2</sub> -TiC, BN                                       | eBeam evaporation of Al-Si alloys is<br>possible, but sputter deposition is a<br>better approach                    |
| Antimony                    | Sb                              | 630              | 6.68          | _       | 279              | 345<br>sublimes          | 425             | eBeam (fair) | BN, graphite,<br>Al <sub>2</sub> O <sub>3</sub>                 | As the deposition rate is increased from<br>3-5 Å/s the grain size decreases and<br>film coverage improves          |
| Antimony<br>Telluride       | Sb <sub>2</sub> Te <sub>3</sub> | 619              | 6.5           | _       | _                | _                        | 600             | eBeam (fair) | graphite, BN, W                                                 | Best results are achieved with<br>powdered source material, relatively<br>high deposition rates can be achieved     |
| Antimony<br>Trioxide        | Sb <sub>2</sub> O <sub>3</sub>  | 656              | 5.2 or 5.76   | _       | _                | —<br>sublimes            | ~300            | eBeam (good) | BN, Al <sub>2</sub> O <sub>3</sub>                              | eBeam evaporation from powder or granules                                                                           |
| Antimony<br>Triselenide     | $Sb_2Se_3$                      | 611              | -             | -       | _                | —                        | _               | eBeam (fair) | graphite                                                        | Can be co-evaporated with Se to<br>overcome variable stoichiometric effects                                         |
| Antimony<br>Trisulphide     | $Sb_2S_3$                       | 550              | 4.64          | _       |                  | _                        | ~200            | eBeam (good) | Al <sub>2</sub> O <sub>3</sub> , Mo, Ta                         | Films without substrate heating are<br>amorphous, while polycrystalline films<br>form on heated substrates          |
| Arsenic                     | As                              | 814              | 5.73          | -       | 107              | 150<br>sublimes          | 210             | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , BeO,<br>graphite               | Sputter deposition is the preferred<br>method for deposition of elemental<br>arsenic                                |
| Arsenic<br>Selenide         | $As_2Se_3$                      | 360              | 4.75          | _       | _                | _                        | _               | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , quartz                         | Deposition efficiency increases with<br>deposition rate                                                             |
| Arsenic<br>Trisulphide      | $As_2S_3$                       | 300              | 3.43          | -       |                  | —                        | ~400            | eBeam (fair) | Al <sub>2</sub> O <sub>3</sub> , quartz,<br>Mo                  | Thin films tend to be richer in As<br>compared to the source material                                               |
| Arsenic<br>Tritelluride     | As <sub>2</sub> Te <sub>3</sub> | 362              | _             | _       | _                | _                        | _               | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , quartz                         | CVD is the preferred deposition technique for this material                                                         |
| Barium                      | Ва                              | 710              | 3.78          | _       | 545              | 627                      | 735             | eBeam (fair) | W, Ta, Mo                                                       | Reacts with ceramics. Ba evaporation<br>pellets are often shipped with protective<br>coatings which must be removed |
| Barium<br>Chloride          | BaCl <sub>2</sub>               | 962              | 3.86          | _       | _                | _                        | ~650            | eBeam (poor) | W, Mo                                                           | Swept beam and slow power ramp to<br>precondition and outgas the source<br>material                                 |
| Barium Fluoride             | BaF <sub>2</sub>                | 1280             | 4.83          | _       | —                | —<br>sublimes            | ~700            | eBeam (fair) | W, Mo                                                           | Better consistency in refractive index is achieved via CVD                                                          |
| Barium Oxide                | BaO                             | 1923             | 5.72 or 5.32  | _       | _                | _                        | ~1300           | eBeam (fair) | Al <sub>2</sub> O <sub>3</sub> , quartz                         | Swept beam and slow power ramp to<br>precondition and outgas the source<br>material                                 |
| Barium<br>Sulphide          | BaS                             | 2200             | 4.25          | _       | _                | _                        | 1100            | eBeam (poor) | W, Mo                                                           | Sputter deposition is the preferred deposition technique                                                            |
| Barium Titanate             | BaTiO <sub>3</sub>              | Decomposes       | 6             | _       | [                | Decompose                | S               | eBeam (poor) | W, Mo                                                           | BaTiO <sub>3</sub> will decompose as single<br>source. Co-evaporate with Ti to<br>maintain Ba/Ti ratio              |

| Motorial               | Symbol                                         | Melting  | Density       | 7 rotio | ٦<br>°C @ Va | lemperatur<br>por Pressu | e<br>ıre (Torr)                                                                                         | Evaporation  | Crucible                                          | Bomarka                                                                                                                             |
|------------------------|------------------------------------------------|----------|---------------|---------|--------------|--------------------------|---------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Material               | Symbol                                         | Point °C | (bulk, g/cm³) | 2-ratio | <b>10</b> -8 | 10-6                     | 10 <sup>-6</sup> 10 <sup>-4</sup> Evaporation<br>Method           878         1000         eBeam (Xint) | Method       | Liner                                             | Reindiks                                                                                                                            |
| Beryllium              | Be                                             | 1278     | 1.85          | _       | 710          | 878                      | 1000                                                                                                    | eBeam (XInt) | graphite                                          | Very high deposition rates are possible.<br>Avoid Be powder sources due to toxicity                                                 |
| Beryllium<br>Chloride  | BeCl <sub>2</sub>                              | 440      | 1.9           | _       | _            | _                        | ~150                                                                                                    | eBeam (poor) | graphite                                          | CVD is the preferred deposition technique for this material                                                                         |
| Beryllium<br>Fluoride  | $BeF_2$                                        | 800      | 1.99          | _       | _            |                          | ~200                                                                                                    | eBeam (fair) | graphite                                          | Avoid powder sources due to toxicity                                                                                                |
| BervIlium Oxide        | BeO                                            | 2530     | 3.01          | _       | _            |                          | 1900                                                                                                    | eBeam (fair) | graphite, ALO,                                    | Thin films can also be produced via                                                                                                 |
|                        |                                                |          |               |         |              |                          |                                                                                                         |              | 3                                                 | Post deposition thermal annealing                                                                                                   |
| Bismuth                | Bi                                             | 271      | 9.8           | _       | 330          | 410                      | 520                                                                                                     | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , graphite         | significantly enhances film properties.<br>However, vapors are toxic                                                                |
| Bismuth<br>Fluoride    | $BiF_3$                                        | 727      | 8.75          | _       | _            |                          | ~300                                                                                                    | eBeam (poor) | graphite                                          | Sublimes at relatively low temperature,<br>so reasonable vapor pressure can be<br>achieved                                          |
| Bismuth Oxide          | Bi <sub>2</sub> O <sub>3</sub>                 | 820      | 8.9           | -       | _            | _                        | ~1400                                                                                                   | eBeam (poor) | _                                                 | eBeam evaporation from Bi <sub>2</sub> O <sub>3</sub> source<br>is possible, but variations in thin film<br>stoichiometry may occur |
| Bismuth<br>Selenide    | Bi <sub>2</sub> Se <sub>3</sub>                | 710      | 7.66          |         |              | -                        | ~650                                                                                                    | eBeam (fair) | graphite, quartz                                  | Sputter deposition is preferred, but<br>co-evaporation using Bi and Se sources<br>is possible                                       |
| Bismuth<br>Telluride   | Bi <sub>2</sub> Te <sub>3</sub>                | 585      | 7.85          | _       | _            | _                        | ~600                                                                                                    | eBeam (fair) | graphite, quartz                                  | Sputter deposition is preferred, but<br>co-evaporation using Bi and Te sources<br>is possible                                       |
| Bismuth<br>Titanate    | Bi <sub>2</sub> Ti <sub>2</sub> O <sub>7</sub> | _        |               |         | [            | Decompose                | S                                                                                                       | eBeam (poor) | graphite, quartz                                  | Decomposes when evaporated. Sputter deposition is preferred, but can be reactively co-evaporated in O <sub>2</sub> partial pressure |
| Bismuth<br>Trisulphide | Bi <sub>2</sub> S <sub>3</sub>                 | 685      | 7.39          | -       | _            | _                        | _                                                                                                       | eBeam (poor) | graphite, W                                       | Can be co-evaporated from Bi and S sources                                                                                          |
| Boron                  | В                                              | 2100     | 2.36          | 0.389   | 1278         | 1548<br>sublimes         | 1797                                                                                                    | eBeam (XInt) | graphite, W                                       | Can react with graphite and tungsten<br>crucible liners. Requires high power to<br>evaporate                                        |
| Boron Carbide          | B₄C                                            | 2350     | 2.5           | _       | 2500         | 2580                     | 2650                                                                                                    | eBeam (good) | graphite, W                                       | Ion assisted eBeam deposition with Ar<br>can improve film adhesion                                                                  |
| Boron Nitride          | BN                                             | 2300     | 2.2           | _       |              | —                        | ~1600                                                                                                   | eBeam (poor) | graphite, W                                       | lon assisted eBeam deposition with N <sub>2</sub> produces stoichiometric thin films, but                                           |
|                        |                                                |          |               |         |              | sublimes                 | r                                                                                                       |              |                                                   | sputter deposition is preferred                                                                                                     |
| Boron Oxide            | B <sub>2</sub> O <sub>3</sub>                  | 460      | 1.82          | -       | _            | -                        | ~1400                                                                                                   | eBeam (good) | W, Mo                                             | material produces stoichiometric thin<br>films                                                                                      |
| Boron<br>Trisulphide   | $B_2S_3$                                       | 310      | 1.55          | _       | _            | -                        | 800                                                                                                     | eBeam (poor) | graphite                                          | -                                                                                                                                   |
| Cadmium                | Cd                                             | 321      | 8.64          | -       | 64           | 120                      | 180                                                                                                     | eBeam (fair) | Al <sub>2</sub> O <sub>3</sub> , quartz           | Dedicated system is recommended,<br>since Cd can contaminate other purity<br>sensitive depositions                                  |
| Cadmium<br>Antimonide  | CdSb                                           | 456      | 6.92          | _       | _            | -                        | -                                                                                                       | _            | _                                                 | —                                                                                                                                   |
| Cadmium<br>Arsenide    | $Cd_3As_2$                                     | 721      | 6.21          | _       | _            | _                        | _                                                                                                       | eBeam (poor) | quartz                                            | Thin films can be produced by eBeam<br>evaporation from bulk source material,<br>but CVD is a preferred deposition<br>method        |
| Cadmium<br>Bromide     | CdBr <sub>2</sub>                              | 567      | 5.19          | _       | _            | _                        | ~300                                                                                                    | _            | _                                                 | -                                                                                                                                   |
| Cadmium<br>Chloride    | CdCl <sub>2</sub>                              | 570      | 4.05          | _       | _            | _                        | ~400                                                                                                    | —            | _                                                 | _                                                                                                                                   |
| Cadmium<br>Fluoride    | CdF <sub>2</sub>                               | 1070     | 5.64          | _       | _            | _                        | ~500                                                                                                    | _            | _                                                 | _                                                                                                                                   |
| Cadmium<br>Iodide      | Cdl <sub>2</sub>                               | 400      | 5.3           | _       | _            | _                        | ~250                                                                                                    | _            | _                                                 | CdI <sub>2</sub> films have been deposited by thermal evaporation on glass substrates using stoichiometric powders                  |
| Cadmium Oxide          | CdO                                            | 900      | 6.95          | _       | _            | _                        | ~530                                                                                                    | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , quartz           | Can be produced by reactive<br>evaporation of Cd in partial pressure of<br>$O_2$ or reactive sputtering with $O_2$                  |
| Cadmium<br>Selenide    | CdSe                                           | 1264     | 5.81          | _       | _            |                          | 540                                                                                                     | eBeam (good) | Al <sub>2</sub> O <sub>3</sub> , quartz, graphite | eBeam evaporation from bulk source material produces uniform films                                                                  |

| Material             | Symbol                                          | Melting       | Density       | Z-ratio | ٦<br>°C @ Va     | lemperatur<br>por Pressu | e<br>ıre (Torr) | Evaporation  | Crucible                                             | Remarks                                                                                                                               |
|----------------------|-------------------------------------------------|---------------|---------------|---------|------------------|--------------------------|-----------------|--------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                      |                                                 | Point °C      | (bulk, g/cm³) |         | 10 <sup>-8</sup> | 10-6                     | 10-4            | Method       | Liner                                                |                                                                                                                                       |
| Cadmium<br>Siliside  | CdSiO <sub>2</sub>                              | _             | _             | -       | _                | _                        | ~600            | _            | —                                                    | Reports in the literature of deposition<br>by CVD                                                                                     |
| Cadmium<br>Sulphide  | CdS                                             | 1750          | 4.82          | _       | _                |                          | 550             | eBeam (fair) | Al <sub>2</sub> O <sub>3</sub> , quartz,<br>graphite | Substrate heating improves film<br>adhesion. Deposition rates of 15 Å/sec<br>are possible                                             |
| Cadmium<br>Telluride | CdTe                                            | 1098          | 6.2           | _       | _                | _                        | 450             | eBeam (fair) | Al₂O₃, quartz,<br>graphite                           | High quality CdTe thin films on glass<br>substrates at 100°C have been<br>fabricated with eBeam deposition                            |
| Calcium              | Са                                              | 842           | 1.56          | _       | 272              | 357<br>sublimes          | 459             | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , quartz              | Low partial pressure of O <sub>2</sub> in the vacuum chamber is required to avoid oxidizing the Ca                                    |
| Calcium<br>Fluoride  | CaF <sub>2</sub>                                | 1360          | 3.18          | _       | _                | _                        | ~1100           | eBeam (XInt) | quartz, Ta                                           | Deposition rate of 20 Å/sec are easily<br>achieved with eBeam deposition.<br>Substrate heating improves film quality                  |
| Calcium Oxide        | CaO                                             | 2580          | 3.35          | _       | _                | _                        | ~1700           | eBeam (poor) | ZrO <sub>2</sub> , graphite                          | Forms volatile oxides with W and Mo                                                                                                   |
| Calcium Silicate     | CaO-SiO <sub>2</sub>                            | 1540          | 2.9           | _       | _                | _                        | _               | eBeam (good) | quartz                                               | Post deposition thermal annealing<br>at 500°C improves film quality and<br>adhesion                                                   |
| Calcium<br>Sulphide  | CaS                                             | —<br>sublimes | 2.18          | -       | _                | -                        | 1100            | eBeam (poor) | ZrO <sub>2</sub> , graphite                          | Decomposition of CaS bulk source<br>material can be overcome by co-<br>evaporation with S                                             |
| Calcium<br>Titanate  | CaTiO <sub>3</sub>                              | 1975          | 4.1           | _       | 1490             | 1600                     | 1690            | eBeam (poor) | _                                                    | Sputter deposition is the preferred method                                                                                            |
| Calcium<br>Tungstate | CaWO <sub>4</sub>                               | 1620          | 6.06          | _       | -                | —                        | -               | eBeam (good) | W, ZrO <sub>2</sub>                                  | Substrate heating improves the<br>crystallinity of the deposit                                                                        |
| Carbon<br>(diamond)  | С                                               | —<br>sublimes | 1.8-2.3       | 0.22    | 1657             | 1867<br>sublimes         | 2137            | eBeam (XInt) | graphite, W                                          | Better film adhesion results from eBeam evaporation compared to vacuum arc deposition                                                 |
| Cerium               | Ce                                              | 795           | 8.23          | _       | 970              | 1150                     | 1380            | eBeam (good) | Al <sub>2</sub> O <sub>3</sub> , BeO,<br>graphite    | Ce deposits readily oxidize when<br>exposed to air                                                                                    |
| Ceric Oxide          | CeO <sub>2</sub>                                | 2600          | 7.3           | _       | 1890             | 2000<br>sublimes         | 2310            | eBeam (good) | graphite, Ta                                         | Stoichiometric films are best achieved<br>using reactive evaporation with O <sub>2</sub> .<br>Substrate heating improves film quality |
| Cerium Fluoride      | CeF <sub>3</sub>                                | 1418          | 6.16          | _       | _                | _                        | ~900            | eBeam (good) | Mo, Ta, W                                            | Can be produced using bulk source<br>material. Substrate heating from<br>150-300°C improves adhesion and film<br>quality              |
| Cerium Oxide         | Ce <sub>2</sub> O <sub>3</sub>                  | 1692          | 6.87          | _       | _                | _                        | _               | eBeam (fair) | graphite, Ta                                         | Mixed $CeO_2$ - $Ce_2O_3$ films can be reduced to $Ce_2O_3$ by heating in UHV at 725°C                                                |
| Cesium               | Cs                                              | 28            | 1.87          | -       | -16              | 22                       | 30              | eBeam (poor) | quartz                                               | -                                                                                                                                     |
| Cesium<br>Bromide    | CsBr                                            | 636           | 4.44          |         | _                | _                        | ~400            | _            | _                                                    | _                                                                                                                                     |
| Cesium<br>Chloride   | CsCl                                            | 646           | 3.97          | _       | _                | _                        | ~500            | _            |                                                      | _                                                                                                                                     |
| Cesium<br>Fluoride   | CsF                                             | 684           | 3.59          | _       | _                | _                        | ~500            | _            |                                                      | _                                                                                                                                     |
| Cesium<br>Hydroxide  | CsOH                                            | 272           | 3.67          | _       | _                | -                        | ~550            | _            | _                                                    | _                                                                                                                                     |
| Cesium lodide        | Csl                                             | 621           | 4.51          | _       | _                | _                        | ~500            | eBeam (poor) | quartz, Pt                                           | Stoichiometric CsI films are possible<br>from bulk, source material, but good film<br>coverage can be a challenge                     |
| Chiolote             | Na <sub>5</sub> Al <sub>3</sub> F <sub>14</sub> | -             | 2.9           | -       |                  | -                        | ~800            | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub>                       | Stoichiometric chiolite films are difficult to fabricate with eBeam evaporation                                                       |
| Chromium             | Cr                                              | 1890          | 7.2           | 0.305   | 837              | 977<br>sublimes          | 1157            | eBeam (good) | W, graphite                                          | Films are very adherent. High<br>deposition rates possible, but uniformity<br>can be an issue                                         |
| Chromium<br>Boride   | CrB                                             | 2760          | 6.17          | —       | _                | _                        | _               | _            | _                                                    | _                                                                                                                                     |
| Chromium<br>Bromide  | CrBr <sub>2</sub>                               | 842           | 4.36          | _       | _                | _                        | 550             | _            | _                                                    | _                                                                                                                                     |
| Chromium<br>Carbide  | Cr <sub>3</sub> C <sub>2</sub>                  | 1890          | 6.68          | -       | —                | -                        | ~2000           | eBeam (fair) | w                                                    | Can be fabricated by co-evaporation<br>of Cr and C                                                                                    |
| Chromium<br>Chloride | CrCl2                                           | 824           | 2.75          | -       | _                | -                        | 550             | _            | _                                                    | _                                                                                                                                     |

| Material S                      | Symbol                           | Melting  | Density                    | 7 rotio    | ratio<br>Temperature<br>°C @ Vapor Pressure (Torr)<br>10 <sup>-8</sup> 10 <sup>-6</sup> 10 <sup>-4</sup> |                 |       | Evaporation                                                       | Crucible                                                  | Bomorko                                                                                                                                          |
|---------------------------------|----------------------------------|----------|----------------------------|------------|----------------------------------------------------------------------------------------------------------|-----------------|-------|-------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Material                        | Symbol                           | Point °C | (bulk, g/cm <sup>3</sup> ) | 2-1atio    | 10-8                                                                                                     | 10-6            | 10-4  | Method         Lin           ~2000         eBeam (good)         W | Liner                                                     | Reliidiks                                                                                                                                        |
| Chromium<br>Oxide               | Cr <sub>2</sub> O <sub>3</sub>   | 2435     | 5.21                       | _          | _                                                                                                        | _               | ~2000 | eBeam (good)                                                      | w                                                         | Stoichiometry can be maintained by reactive evaporation in $\rm O_2$                                                                             |
| Chromium<br>Siliside            | Cr₃Si                            | 1710     | 6.51                       | _          | _                                                                                                        | _               | _     | -                                                                 | -                                                         | -                                                                                                                                                |
| Chromium<br>Silicon<br>Monoxide | Cr-SiO                           |          | Influen                    | Iced by Co | mposition                                                                                                |                 |       | eBeam (good)                                                      | w                                                         | The quality Cr-SiO cermet films<br>fabricated with eBeam evaporation<br>improves with annealing at 425° C                                        |
| Cobalt                          | Co                               | 1495     | 8.9                        | _          | 850                                                                                                      | 990             | 1200  | eBeam (XInt)                                                      | Al <sub>2</sub> O <sub>3</sub> , BeO,<br>graphite         | Pellets or powder both work well as<br>source material                                                                                           |
| Cobalt Bromide                  | CoBr <sub>2</sub>                | 678      | 4.91                       | _          |                                                                                                          |                 | 400   | _                                                                 | _                                                         | _                                                                                                                                                |
|                                 | CoCl                             | 740      | 2.26                       |            | —                                                                                                        |                 | 472   |                                                                   |                                                           |                                                                                                                                                  |
| Cobait Chioride                 |                                  | 740      | 3.30                       |            |                                                                                                          | sublimes        | r     | _                                                                 | _                                                         | -                                                                                                                                                |
| Cobalt Oxide                    | CoO                              | 1935     | 5.68                       | _          | _                                                                                                        | _               | _     | eBeam (fair)                                                      | _                                                         | CoO can be fabricated by reactive evaporation with $O_2$ , but sputter deposition is the preferred fabrication method                            |
| Copper                          | Cu                               | 1083     | 8.92                       | 0.437      | 727                                                                                                      | 857             | 1017  | eBeam (XInt)                                                      | Al <sub>2</sub> O <sub>3</sub> , Mo Ta,<br>graphite       | Poor adhesion on most substrates. Use thin adhesion layer of Cr or Ti                                                                            |
| Copper<br>Chloride              | CuCl                             | 422      | 3.53                       | _          | _                                                                                                        | _               | ~600  | eBeam (poor)                                                      | quartz                                                    | Stoichiometric CuCl films have been<br>produced from pellets and powder<br>source material                                                       |
| Copper Oxide                    | Cu <sub>2</sub> O                | 1235     | 6                          | _          | _                                                                                                        |                 | ~600  | eBeam (good)                                                      | graphite, Al <sub>2</sub> O <sub>3</sub> ,<br>Ta          | Thin films have been fabricated from stoichiometric Cu.O powder                                                                                  |
|                                 |                                  |          |                            |            | _                                                                                                        | sublimes        | ~500  |                                                                   |                                                           |                                                                                                                                                  |
| Copper Sulfide                  | CuS                              | 1113     | 6.75                       | -          |                                                                                                          | sublimes        |       | _                                                                 | _                                                         | -                                                                                                                                                |
| Cryolite                        | Na <sub>3</sub> AIF <sub>6</sub> | 1000     | 2.9                        | -          | 1020                                                                                                     | 1260            | 1480  | eBeam (good)                                                      | W, graphite                                               | Good films can be fabricated using<br>pellets or powder source material.                                                                         |
| Dyprosium                       | Dy                               | 1409     | 8.54                       | _          | 625                                                                                                      | 750             | 900   | eBeam (good)                                                      | w                                                         | Quality thin films can be fabricated from<br>bulk source material                                                                                |
| Dyprosium                       | DyF <sub>2</sub>                 | 1360     | 6                          | _          | —                                                                                                        | —               | ~800  | eBeam (good)                                                      | W, Ta                                                     | Bulk source material is available in                                                                                                             |
| Fluoride                        | - 3                              |          |                            |            |                                                                                                          | sublimes        | (     |                                                                   | ,                                                         | Thin films have been fabricated from                                                                                                             |
| Oxide                           | Dy <sub>2</sub> O <sub>3</sub>   | 2340     | 7.81                       | _          | -                                                                                                        | -               | ~1400 | eBeam (fair)                                                      | W                                                         | bulk source material                                                                                                                             |
| Erbium                          | Er                               | 1497     | 9.06                       | 0.74       | 650                                                                                                      | sublimes        | 930   | eBeam (good)                                                      | W, Ta                                                     | -                                                                                                                                                |
| Erbium Fluoride                 | ErF <sub>2</sub>                 | 1380     | 6.5                        |            | _                                                                                                        | _               | ~950  | —                                                                 | —                                                         | —                                                                                                                                                |
| Erbium Oxide                    | $\mathrm{Er_2O_3}$               | 2400     | 8.64                       | —          | —                                                                                                        | -               | ~1600 | eBeam (fair)                                                      | W                                                         | Reactive evaporation of bulk material in $O_2$ atmosphere maintains stoichiometry.                                                               |
| Europium                        | Eu                               | 822      | 5.26                       | _          | 280                                                                                                      | 360<br>sublimes | 480   | eBeam (fair)                                                      | $Al_2O_3$                                                 | _                                                                                                                                                |
| Europium<br>Fluoride            | EuF <sub>2</sub>                 | 1380     | 6.5                        | _          | _                                                                                                        | -               | ~950  | _                                                                 | _                                                         | —                                                                                                                                                |
| Europium<br>Oxide               | Eu <sub>2</sub> O <sub>3</sub>   | 2400     | 8.64                       | _          | _                                                                                                        | _               | ~1600 | eBeam (good)                                                      | w                                                         | Reactive evaporation of $Eu_2O_3$ powder<br>or granules in $O_2$ atmosphere maintains<br>stoichiometry.                                          |
| Europium<br>Sulphide            | EuS                              | _        | 5.75                       | _          | _                                                                                                        | _               | _     | eBeam (good)                                                      | w                                                         | eBeam evaporation of EuS powder in<br>UHV (10 <sup>s</sup> torr base vacuum) has been<br>reported in the literature                              |
| Gadolinium                      | Gd                               | 1312     | 7.89                       | _          | 760                                                                                                      | 900             | 1175  | eBeam (XInt)                                                      | Al <sub>2</sub> 0 <sub>3</sub> , W                        | eBeam evaporation of Gd directly from<br>the water cooled Cu hearth has been<br>reported                                                         |
| Gadolinium<br>Oxide             | $\mathrm{Gd}_{2}\mathrm{O}_{3}$  | 2310     | 7.41                       | _          | _                                                                                                        | _               | _     | eBeam (fair)                                                      | Al <sub>2</sub> 0 <sub>3</sub> , W                        | Reactive evaporation of $Gd_2O_3$ pellets<br>in $O_2$ maintains thin film stoichiometry.<br>Refractive index increases with<br>substrate heating |
| Gallium                         | Ga                               | 30       | 5.9                        | _          | 619                                                                                                      | 742             | 907   | eBeam (good)                                                      | graphite, Al <sub>2</sub> O <sub>3</sub> ,<br>BeO, quartz | Alloys with refractory metals                                                                                                                    |
| Gallium<br>Antimonide           | GaSb                             | 710      | 5.6                        | _          | —                                                                                                        | -               | —     | eBeam (fair)                                                      | W, Ta                                                     | eBeam evaporation from bulk source<br>material is possible                                                                                       |

| Meterial                 | Cumbal                          | Melting       | Density                    | Zuchia  | ٦<br>°C @ Va | lemperatur<br>por Pressu | e<br>ire (Torr) | Evaporation  | Crucible                                                  | Demorte                                                                                                                                                   |
|--------------------------|---------------------------------|---------------|----------------------------|---------|--------------|--------------------------|-----------------|--------------|-----------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material                 | Symbol                          | Point °C      | (bulk, g/cm <sup>3</sup> ) | 2-1atio | 10-8         | <b>10</b> -6             | 10-4            | Method       | Liner                                                     | Reindiks                                                                                                                                                  |
| Gallium<br>Arsenide      | GaAs                            | 1238          | 5.3                        | _       | _            | -                        | -               | eBeam (good) | graphite, W                                               | Film quality is improved with ion<br>assisted evaporation                                                                                                 |
| Gallium Nitride          | GaN                             | —<br>sublimes | 6.1                        | _       | _            | _                        | ~200            | eBeam (fair) | graphite, Al <sub>2</sub> O <sub>3</sub> ,<br>BeO, quartz | Reactive evaporation of Ga in $10^{-3}$ N <sub>2</sub>                                                                                                    |
| Gallium<br>Oxide (ß)     | Ga <sub>2</sub> O <sub>3</sub>  | 1900          | 5.88                       | _       | _            | _                        | _               | eBeam (fair) | graphite, W                                               | Reactive evaporation of Ga <sub>2</sub> O <sub>3</sub> in O <sub>2</sub><br>partial pressure maintains stoichiometry                                      |
| Gallum<br>Phosphide      | GaP                             | 1540          | 4.1                        | _       | —            | 770                      | 920             | eBeam (fair) | quartz, W                                                 | Co-evaporation of Ga and P has been reported                                                                                                              |
| Gemanium                 | Ge                              | 937           | 5.35                       | 0.516   | 812          | 957                      | 1167            | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , quartz, graphite, Ni     | Uniform films achieved with slow power ramp and swept beam                                                                                                |
| Germanium<br>Nitride     | ${\sf Ge_3N_2}$                 | 450           | 5.2                        | _       | _            |                          | ~650            | eBeam (poor) | _                                                         | Sputtering is the preferred method of fabrication                                                                                                         |
| Germanium<br>Oxide       | GeO <sub>2</sub>                | 1086          | 6.24                       | _       | _            | _                        | ~625            | eBeam (good) | graphite, Al <sub>2</sub> O <sub>3</sub> ,<br>quartz      | ${\rm GeO}_2$ stoichiometry can be maintained by reactive evaporation of bulk source material in ${\rm O}_2$                                              |
| Germanium<br>Telluride   | GeTe                            | 725           | 6.2                        | -       | _            | —                        | 381             | _            | —                                                         | -                                                                                                                                                         |
| Gold                     | Au                              | 1062          | 19.32                      | 0.381   | 807          | 947                      | 1132            | eBeam (XInt) | W, Al <sub>2</sub> O <sub>3</sub> ,<br>graphite, BN       | Metal spitting can be an issue. Mitigate<br>by slow power ramp with swept beam<br>and low carbon content in source<br>material                            |
| Hafnium                  | Hf                              | 2230          | 13.09                      | -       | 2160         | 2250                     | 3090            | eBeam (good) | W                                                         | —                                                                                                                                                         |
| Hafnium Boride           | HfB <sub>2</sub>                | 3250          | 10.5                       | _       | _            | _                        | _               | _            | _                                                         | Fabrication of $\mathrm{HfB}_2$ films by CVD has been reported                                                                                            |
| Hafnium<br>Carbide       | HfC                             | 4160          | 12.2                       | _       |              |                          | ~2600           | _            | _                                                         | -                                                                                                                                                         |
| Hafnium Nitride          | HfN                             | 2852          | 13.8                       | _       | _            | _                        | _               | _            | _                                                         | HfN films have been produced by reactive RF sputtering of Hf in $N_2$ + Ar                                                                                |
| Hafnium Oxide            | HfO <sub>2</sub>                | 2812          | 9.68                       | _       | _            | _                        | ~2500           | eBeam (fair) | graphite, W                                               | Can be fabricated by reactive<br>evaporation in O <sub>2</sub> or using bulk source<br>material. Post process annealing at<br>500°C improves film quality |
| Hafnium<br>Silicide      | HfSi <sub>2</sub>               | 1750          | 7.2                        | _       | _            | _                        | _               | eBeam (fair) | w                                                         | HfSi <sub>2</sub> thin films have been fabricated<br>by eBeam evaporation of Hf on Si<br>substrates followed by annealing at<br>750°C for an hour         |
| Holmium                  | Ho                              | 1470          | 8.8                        | _       | 650          | 770<br>sublimes          | 950             | eBeam (good) | W                                                         | -                                                                                                                                                         |
| Holmium<br>Fluoride      | HoF <sub>3</sub>                | 1143          | 7.64                       | _       | _            |                          | ~800            | _            | quartz                                                    | -                                                                                                                                                         |
| Holmium Oxide            | Ho <sub>2</sub> O <sub>3</sub>  | 2370          | 8.41                       | _       | _            | _                        | -               | eBeam (fair) | W                                                         | ${\rm Ho_2O_3}$ thin films have been fabricated<br>by eBeam evaporation of powdered<br>source material or reactive evaporation<br>of Ho in O_2            |
| Indium                   | In                              | 157           | 7.3                        | 0.841   | 487          | 597                      | 742             | eBeam (XInt) | Mo, graphite,<br>Al <sub>2</sub> O <sub>3</sub>           | Wets Cu and W. Mo liner is preferred                                                                                                                      |
| Indium<br>Antimonide     | InSb                            | 535           | 5.8                        | _       | 500          | _                        | ~400            | eBeam (fair) | graphite, W                                               | Thin films fabricated using powdered source material                                                                                                      |
| Indium<br>Arsenide       | InAs                            | 943           | 5.7                        | _       | 780          | 870                      | 970             | —            | _                                                         | Sputter deposition is the preferred thin film fabrication technique                                                                                       |
| Indium Oxide             | In <sub>2</sub> O <sub>3</sub>  | 1565          | 7.18                       | _       | _            |                          | ~1200           | eBeam (good) | $Al_2O_3$                                                 | Thin films have been produced by reactive evaporation of powdered $In_2O_3$ in $O_2$ partial pressure.                                                    |
| Indium<br>Phosphide      | InP                             | 1058          | 4.8                        | _       |              | 630                      | 730             | eBeam (fair) | graphite, W                                               | Deposits are P rich                                                                                                                                       |
| Indium Selenide          | In <sub>2</sub> Se <sub>3</sub> | 890           | 5.7                        | _       | _            | _                        | _               | eBeam (fair) | graphite, W                                               | Thin films have been fabricated by<br>eBeam evaporation from powdered<br>InSe. Post process annealing improves<br>crystallinity                           |
| Indium<br>Sesquisulphide | $ln_2S_3$                       | 1050          | 4,9                        | _       |              | —<br>sublimes            | 850             | _            | _                                                         | _                                                                                                                                                         |

| Matorial              | Symbol                                               | Melting  | Density       | 7 ratio | ا<br>°C @ Va | lemperatur<br>por Pressu | e<br>ire (Torr) | Torr) Evaporation Crucible<br>Method Liner | Crucible                                             | Pomarka                                                                                                                                                                                       |
|-----------------------|------------------------------------------------------|----------|---------------|---------|--------------|--------------------------|-----------------|--------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Material              | Symbol                                               | Point °C | (bulk, g/cm³) | 2-14110 | 10-8         | 10-6                     | 10-4            | Method                                     | Liner                                                | Nellia KS                                                                                                                                                                                     |
| Indium<br>Sulphide    | In <sub>2</sub> S                                    | 653      | 5.87          | _       | _            | —                        | 650             | _                                          | _                                                    | _                                                                                                                                                                                             |
| Indium Telluride      | In <sub>2</sub> Te <sub>3</sub>                      | 667      | 5.8           | _       | _            | _                        | _               | —                                          | -                                                    | Thin films from co-evaporation of In and Te sources has been reported.                                                                                                                        |
| Indium Tin<br>Oxide   | In <sub>2</sub> O <sub>3</sub> -<br>SnO <sub>2</sub> | 1800     | 6.43-7.14     |         | _            | _                        |                 | eBeam (good)                               | graphite                                             | Thin films have been produced from<br>90% $\ln_2O_3$ -10% SnO_2 powder in $O_2$<br>partial pressure. Substrate temperature<br>of 250°C improves electrical<br>conductivity of resulting films |
| Iridium               | lr                                                   | 2459     | 22.65         | -       | 1850         | 2080                     | 2380            | eBeam (fair)                               | W                                                    | Better uniformity and adhesion can be achieved using sputter deposition                                                                                                                       |
| Iron                  | Fe                                                   | 1535     | 7.86          | 0.349   | 858          | 998                      | 1180            | eBeam (XInt)                               | Al <sub>2</sub> O <sub>3</sub> , BeO,<br>graphite    | Molten Fe will attack and adhere to<br>graphite, severely limiting crucible<br>liner life                                                                                                     |
| Iron Bromide          | FeBr <sub>2</sub>                                    | 689      | 4.64          | _       | _            | _                        | 561             | —                                          | —                                                    | -                                                                                                                                                                                             |
| Iron Chloride         | FeCl <sub>2</sub>                                    | 670      | 2.98          | _       |              |                          | 300             | _                                          | _                                                    | _                                                                                                                                                                                             |
| Iron lodide           | Fel <sub>2</sub>                                     | 592      | 5.31          | _       | _            | _                        | 400             | _                                          | _                                                    | -                                                                                                                                                                                             |
| Iron Oxide            | FeO                                                  | 1425     | 5.7           | -       | —            | —                        | _               | eBeam (poor)                               | _                                                    | Sputter deposition preferred.                                                                                                                                                                 |
| Iron Oxide            | Fe <sub>2</sub> O <sub>3</sub>                       | 1565     | 5.24          | -       | _            | _                        | _               | eBeam (good)                               | Al <sub>2</sub> O <sub>3</sub> , BeO,<br>graphite    | $Fe_2O_3$ thin films fabricated by reactive evaporation of Fe in 0.1 Pa $O_2$ partial pressure has been reported                                                                              |
| Iron Sulphide         | FeS                                                  | 1195     | 4.84          | —       | _            | —                        | _               | —                                          | _                                                    | _                                                                                                                                                                                             |
| Lanthanum             | La                                                   | 920      | 6.17          | —       | 990          | 1212                     | 1388            | eBeam (XInt)                               | W, Ta                                                | _                                                                                                                                                                                             |
| Lanthanum<br>Boride   | LaB <sub>6</sub>                                     | 2210     | 2.61          | _       | _            | _                        | _               | eBeam (fair)                               | _                                                    | LaB <sub>e</sub> films and coatings are more commonly produced with sputter deposition.                                                                                                       |
| Lanthanum<br>Bromide  | LaBr <sub>3</sub>                                    | 783      | 5.06          | _       | _            | _                        |                 | _                                          | _                                                    | _                                                                                                                                                                                             |
| Lanthanum<br>Fluoride | $LaF_3$                                              | 1490     | 6             | _       | _            |                          | 900             | eBeam (good)                               | Ta, Mo                                               | lon assisted eBeam evaporation<br>improves film density and adhesion                                                                                                                          |
| Lanthanum<br>Oxide    | La <sub>2</sub> O <sub>3</sub>                       | 2250     | 5.84          | _       | _            | _                        | 1400            | eBeam (good)                               | W, graphite                                          | C contamination can occur with graphite<br>crucible liners                                                                                                                                    |
| Lead                  | Pb                                                   | 328      | 11.34         | 1.13    | 342          | 427                      | 497             | eBeam (XInt)                               | Al <sub>2</sub> O <sub>3</sub> , quartz, graphite, W | _                                                                                                                                                                                             |
| Lead Bromide          | PbBr <sub>2</sub>                                    | 373      | 6.66          | —       | _            | —                        | ~300            | _                                          | _                                                    | -                                                                                                                                                                                             |
| Lead Chloride         | PbCl <sub>2</sub>                                    | 501      | 5.85          | —       | _            | —                        | ~325            | —                                          | _                                                    | —                                                                                                                                                                                             |
| Lead Fluoride         | PbF <sub>2</sub>                                     | 822      | 8.24          | _       | _            |                          | ~400            | _                                          | _                                                    | -                                                                                                                                                                                             |
| Lead lodide           | Pbl <sub>2</sub>                                     | 502      | 6.16          | _       | _            | _                        | ~500            | _                                          | _                                                    | _                                                                                                                                                                                             |
| Lead Oxide            | PbO                                                  | 890      | 9.53          | -       | _            | _                        | ~550            | eBeam (fair)                               | Al <sub>2</sub> O <sub>3</sub> , quartz, W           | Stoichiometric PbO thin films can be<br>produced using powdered source<br>material                                                                                                            |
| Lead Stannate         | PbSnO <sub>3</sub>                                   | 1115     | 8.1           | —       | 670          | 780                      | 905             | eBeam (poor)                               | Al <sub>2</sub> O <sub>3</sub> , W                   | Disproportionates                                                                                                                                                                             |
| Lead Selenide         | PbSe                                                 | 1065     | 8.1           | -       | —            | —<br>sublimes            | ~500            | eBeam (fair)                               | Al <sub>2</sub> O <sub>3</sub> , graphite            | _                                                                                                                                                                                             |
| Lead Sulphide         | PbS                                                  | 1114     | 7.5           | _       | _            | —<br>sublimes            | 550             | eBeam (fair)                               | Al <sub>2</sub> O <sub>3</sub> , quartz              | Post deposition annealing at 150°C improves the crystallinity of the films                                                                                                                    |
| Lead Telluride        | PbTe                                                 | 917      | 8.16          | _       | 780          | 910                      | 1050            | eBeam (poor)                               | Al <sub>2</sub> O <sub>3</sub> , graphite            | Films produced from bulk PbTe tend<br>to be Te rich. Sputter deposition is<br>preferred                                                                                                       |
| Lead Titanate         | PbTiO <sub>3</sub>                                   | _        | 7.52          | _       | _            | _                        | _               | eBeam (fair)                               | W, Ta                                                | Thin films of PbTiO <sub>3</sub> with reactive co-<br>evaporation of PbO powder and TiO <sub>2</sub><br>pellets in O <sub>2</sub> partial pressure has been<br>reported                       |
| Lithium               | Li                                                   | 179      | 0.53          | —       | 227          | 307                      | 407             | eBeam (good)                               | Ta, Al <sub>2</sub> O <sub>3</sub> , BeO             | Li films oxidize readily in air                                                                                                                                                               |
| Lithium<br>Bromide    | LiBr                                                 | 547      | 3.46          | _       | —            | _                        | ~500            | _                                          | _                                                    | _                                                                                                                                                                                             |

| Material                 | Symbol                           | Melting  | Density       | Z-ratio | ٦<br>°C @ Va     | lemperatur<br>por Pressu | ture<br>ssure (Torr) Evaporation<br>10⁴ | Evaporation  | Crucible                                             | Remarks                                                                                                                                     |
|--------------------------|----------------------------------|----------|---------------|---------|------------------|--------------------------|-----------------------------------------|--------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                  | Point °C | (bulk, g/cm³) |         | 10 <sup>-8</sup> | <b>10</b> <sup>-6</sup>  | 10-4                                    | Method       | Liner                                                |                                                                                                                                             |
| Lithium<br>Chloride      | LiCl                             | 613      | 2.07          | _       | _                | —                        | 400                                     | _            | _                                                    | -                                                                                                                                           |
| Lithium<br>Fluoride      | LiF                              | 870      | 2.6           |         | 875              | 1020                     | 1180                                    | eBeam (good) | W, Mo, Ta, $Al_2O_3$                                 | Rate control important for optical films.<br>Outgas prior to deposition rastered<br>beam                                                    |
| Lithium lodide           | Lil                              | 446      | 4.06          | -       | -                | —                        | 400                                     | —            | -                                                    | —                                                                                                                                           |
| Lithium Oxide            | Li <sub>2</sub> O                | 1427     | 2.01          | -       | —                | —                        | 850                                     | _            | _                                                    | -                                                                                                                                           |
| Lutetium                 | Lu                               | 1652     | 9.84          | _       | _                | —                        | 1300                                    | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub>                       | -                                                                                                                                           |
| Lutetuim Oxide           | Lu <sub>2</sub> O <sub>3</sub>   | 2489     | 9.81          | -       | _                | _                        | 1400                                    | eBeam (fair) | $Al_2O_3$                                            | eBeam evaporation of powdered source material results in stoichiometric films by post deposition rapid thermal anneal in $O_2$ at 400-600°C |
| Magnesium                | Mg                               | 651      | 1.74          | _       | 185              | 247<br>sublimes          | 327                                     | eBeam (good) | W, graphite,<br>Al <sub>2</sub> O <sub>3</sub>       | Powder is flammable. High deposition rates are possible                                                                                     |
| Magnesium<br>Aluminate   | MgAl <sub>2</sub> O <sub>4</sub> | 2135     | 3.6           | _       | _                | _                        | —                                       | _            | _                                                    | eBeam deposition from MgAl <sub>2</sub> O <sub>4</sub> powder has been reported                                                             |
| Magnesium<br>Bromide     | MgBr <sub>2</sub>                | 700      | 3.72          |         | _                | _                        | ~450                                    | _            | _                                                    | _                                                                                                                                           |
| Magnesium<br>Chloride    | MgCl <sub>2</sub>                | 708      | 2.32          | _       | _                | _                        | 400                                     | _            | _                                                    | _                                                                                                                                           |
| Magnesium<br>Fluoride    | $MgF_2$                          | 1266     | 2.9-3.2       | _       | _                | _                        | 1000                                    | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , graphite,<br>Mo     | Best optical properties result from substrate heating at $300^{\circ}C$ and a deposition rate of $\leq 5 \text{ Å/sec}$                     |
| Magnesium<br>Iodide      | Mgl <sub>2</sub>                 | 700      | 4.24          | _       | _                | _                        | 200                                     | _            | _                                                    | _                                                                                                                                           |
| Magnesium<br>Oxide       | MgO                              | 2800     | 3.58          | _       | -                | _                        | 1300                                    | eBeam (good) | Al <sub>2</sub> O <sub>3</sub> , graphite            | Stoichiometric films result from reactive evaporation in partial pressure of $10^{-3}$ torr $\rm O_2$                                       |
| Manganese                | Mn                               | 1244     | 7.2           | _       | 507              | 572<br>sublimes          | 647                                     | eBeam (good) | W, Al <sub>2</sub> O <sub>3</sub> , BeO              | -                                                                                                                                           |
| Manganese<br>Bromide     | MnBr <sub>2</sub>                | 695      | 4.38          | _       | _                | _                        | 500                                     | _            | _                                                    | _                                                                                                                                           |
| Manganese<br>Chloride    | MnCl <sub>2</sub>                | 650      | 2.98          | _       |                  | _                        | 450                                     | _            |                                                      | _                                                                                                                                           |
| Manganese IV<br>Oxide    | MnO <sub>2</sub>                 | 535      | 5.03          | _       | _                | _                        | _                                       | eBeam (poor) | W, Mo, Al <sub>2</sub> O <sub>3</sub>                | Stoichiometric thin films have been produced by reactive evaporation of Mn powder in $10^{\rm -3}$ torr $\rm O_2$                           |
| Manganese<br>Sulphide    | MnS                              | 1615     | 3.99          | -       | -                | -                        | 1300                                    | _            | _                                                    | -                                                                                                                                           |
| Mercury                  | Hg                               | -39      | 13.55         | _       | -68              | -42                      | -6                                      | _            | _                                                    | Toxic, not recommended for evaporation processes                                                                                            |
| Mercury<br>Sulphide      | HgS                              | sublimes | 8.1           | _       |                  | —<br>sublimes            | 250                                     | eBeam (poor) | $Al_2O_3$                                            | Toxic and decomposes, not<br>recommended for evaporation<br>processes                                                                       |
| Molybdenum               | Мо                               | 2610     | 10.22         | _       | 1592             | 1822                     | 2117                                    | eBeam (XInt) | graphite, W                                          | Films are smooth, hard and adherent                                                                                                         |
| Molybdenum<br>Boride     | MoB <sub>2</sub>                 | 2100     | 7.12          | -       | -                | -                        | -                                       | _            | _                                                    | -                                                                                                                                           |
| Molybdenum<br>Carbide    | Mo <sub>2</sub> C                | 2687     | 9.18          | _       | _                | _                        | _                                       | _            | _                                                    | Thin films of $Mo_2C$ by sputter deposition<br>and CVD have been reported                                                                   |
| Molybdenum<br>Disulphide | MoS <sub>2</sub>                 | 1185     | 4.8           |         | _                | _                        | ~50                                     | _            | _                                                    | Fabrication of MoS <sub>2</sub> by CVD has been reported                                                                                    |
| Molybdenum<br>Silicide   | MoSi <sub>2</sub>                | 2050     | 6.3           | _       | _                | _                        | ~50                                     | _            | _                                                    | MoSi <sub>2</sub> films have been produced by sputter deposition                                                                            |
| Molybdenum<br>Trioxide   | MoO <sub>3</sub>                 | 795      | 4.7           | —       | —                | —                        | ~900                                    | eBeam (fair) | Al <sub>2</sub> O <sub>3</sub> , graphite,<br>BN, Mo | Substrate heating improves film<br>crystallinity                                                                                            |
| Neodymium                | Nd                               | 1024     | 7             | —       | 731              | 871                      | 1062                                    | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , Ta                  | _                                                                                                                                           |
| Neodymium<br>Fluoride    | NdF <sub>3</sub>                 | 1410     | 6.5           | -       | _                | _                        | ~900                                    | eBeam (good) | W, Mo, Al <sub>2</sub> O <sub>3</sub>                | Substrate heating at 360°C improved film quality                                                                                            |
| Neodymium<br>Oxide       | Nd <sub>2</sub> O <sub>3</sub>   | 2272     | 7.24          | _       | _                | _                        | ~1400                                   | eBeam (good) | W, Ta                                                | Films may be oxygen deficient.<br>Refractive index increases with<br>increasing substrate temperature                                       |

| Material S             | Symbol                         | Melting  | Density       | 7-ratio | ٦<br>°C @ Va     | lemperatur<br>por Pressu | e<br>ire (Torr) | Evaporation  | Crucible                                             | Pomarke                                                                                                                                                                         |
|------------------------|--------------------------------|----------|---------------|---------|------------------|--------------------------|-----------------|--------------|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| material               | Gymbol                         | Point °C | (bulk, g/cm³) | 2-14110 | 10 <sup>-8</sup> | <b>10</b> -6             | 10-4            | Method       | Liner                                                | Remarks                                                                                                                                                                         |
| Nickel                 | Ni                             | 1453     | 8.91          | 0.331   | 927              | 1072                     | 1262            | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , BeO, W,<br>graphite | Differential thermal expansion between<br>Ni and graphite can cause graphite<br>crucible liners to crack on cooling                                                             |
| Nickel Bromide         | NiBr.                          | 963      | 4.64          | _       | _                | —                        | 362             | _            | _                                                    | _                                                                                                                                                                               |
|                        |                                |          |               |         |                  | sublimes                 | r               |              |                                                      |                                                                                                                                                                                 |
| Nickel Chloride        | NiCl <sub>2</sub>              | 1001     | 3.55          | _       | —                | —                        | 444             | _            | _                                                    | _                                                                                                                                                                               |
|                        |                                |          |               |         |                  | sublimes                 |                 |              |                                                      |                                                                                                                                                                                 |
| Nickel Oxide           | NiO                            | 1990     | 7.45          | _       | _                | _                        | ~1470           | eBeam (good) | Al <sub>2</sub> O <sub>3</sub> , W                   | Substrate temperature of 125°C<br>improves film adhesion and quality.<br>Use of NiO powder as source material<br>mitigates spitting                                             |
| Niobium<br>(Columbium) | Nb (Cb)                        | 2468     | 8.55          | _       | 1728             | 1977                     | 2287            | eBeam (XInt) | graphite                                             | Ion assisted eBeam evaporation<br>modifies Nb film stress from tensile to<br>compressive at a substrate temperature<br>of 400°C                                                 |
| Niobium Boride         | NbB <sub>2</sub>               | 3050     | 6.97          | _       | —                | —                        | —               | —            | —                                                    | —                                                                                                                                                                               |
| Niobium<br>Carbide     | NbC                            | 3800     | 7.82          | _       | _                | _                        | _               | eBeam (fair) | graphite                                             | NbC thin films on Ti has been reported                                                                                                                                          |
| Niobium Nitride        | NbN                            | 2573     | 8.4           | _       | _                | _                        | _               | eBeam (fair) | graphite, W                                          | NbN films have been fabricated using<br>reactive evaporation and reactive<br>sputtering in N <sub>2</sub> . NbN films by ion<br>assisted evaporation have also been<br>reported |
| Niobium Oxide          | NbO                            | _        | 6.27          | —       | -                | —                        | 1100            | _            | _                                                    | -                                                                                                                                                                               |
| Niobium<br>Pentoxide   | Nb <sub>2</sub> O <sub>5</sub> | 1530     | 4.47          | _       | -                | _                        | -               | _            | -                                                    | $\rm Nb_2O_5$ films produced by RF magnetron sputtering using a stoichiometric target have been reported                                                                        |
| Niobium<br>Telluride   | NbTe                           | _        | 7.6           | _       | _                | _                        | _               | —            | —                                                    | —                                                                                                                                                                               |
| Niobium-Tin            | Nb₃Sn                          | -        | -             | _       | -                | -                        | -               | eBeam (XInt) | graphite, Ta                                         | Films produced by co-evaporation of Nb<br>and Sn have been reported. Substrate<br>heating improves film homogeneity                                                             |
| Niobium<br>Trioxide    | $Nb_2O_3$                      | 1780     | 7.5           | —       | -                | —                        | _               | _            |                                                      | -                                                                                                                                                                               |
| Osmium                 | Os                             | 1700     | 22.5          |         | 2170             | 2430                     | 2760            | —            | —                                                    | -                                                                                                                                                                               |
| Palladium              | Pd                             | 1550     | 12.4          | _       | _                | _                        | 1192            | eBeam (XInt) | W, Al <sub>2</sub> O <sub>3</sub> ,<br>graphite      | Susceptible to metal spitting. Mitigate<br>with slow power ramp and longer soak<br>before deposition                                                                            |
| Palladium<br>Oxide     | PdO                            | 870      | 8.31          | _       | _                | _                        | 575             | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub>                       | Decomposes                                                                                                                                                                      |
| Phosphorus             | Р                              | 41.4     | 1.82          | -       | 327              | 361                      | 402             | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub>                       | Reacts violently in air                                                                                                                                                         |
| Platinum               | Pt                             | 1769     | 21.45         | 0.245   | 1292             | 1492                     | 1747            | eBeam (XInt) | W, Al <sub>2</sub> O <sub>3</sub> ,<br>graphite      | Low deposition rates (< 5 Å/sec)<br>preferred for film uniformity. Carbon<br>contamination with graphite liners is<br>possible at high power                                    |
| Plutonium              | Pu                             | 635      | 19            | —       | —                | -                        | —               | —            | _                                                    | Toxic. Radioactive                                                                                                                                                              |
| Polonium               | Po                             | 254      | 9.4           | —       | 117              | 170                      | 244             | -            | —                                                    | Toxic. Radioactive                                                                                                                                                              |
| Potassium              | к                              | 64       | 0.86          | _       | 23               | 60                       | 125             | -            | quartz                                               | Highly reactive in air                                                                                                                                                          |
| Potassium<br>Bromide   | KBr                            | 730      | 2.75          | _       | -                | -                        | ~450            | _            | quartz                                               | Use gentle preheat to outgas                                                                                                                                                    |
| Potassium<br>Chloride  | KCI                            | 776      | 1.98          | _       | —                | _                        | ~510            | eBeam (fair) | Ta, quartz, Mo                                       | Use gentle preheat to outgas                                                                                                                                                    |
| Potassium<br>Fluoride  | KF                             | 880      | 2.48          | -       | —                | —                        | ~500            | eBeam (poor) | quartz                                               | Use gentle preheat to outgas                                                                                                                                                    |
| Potassium<br>Hydroxide | кон                            | 360      | 2.04          | _       | _                | _                        | ~400            | _            | _                                                    | _                                                                                                                                                                               |
| Potassum<br>Iodide     | кі                             | 72       | 3.13          | -       | _                | _                        | ~500            | _            | _                                                    | _                                                                                                                                                                               |
| Praseodymium           | Pr                             | 931      | 6.78          |         | 800              | 950                      | 1150            | eBeam (good) | W, graphite, Ta                                      | Pr films will oxidize in air                                                                                                                                                    |
| Praseodymium<br>Oxide  | Pr <sub>2</sub> O <sub>3</sub> | 2125     | 6.88          | -       | —                | —                        | 1400            | eBeam (good) | W, graphite,<br>ThO <sub>2</sub>                     | Loses oxygen. Reports of $Pr_2O_3$ thin films grown by MBE                                                                                                                      |

| Matorial              | Symbol                         | Melting<br>Point °C | I Melting<br>Point ℃ | Density | 7 ratio      | ۲<br>°C @ Va  | lemperatur<br>por Pressu | e<br>ıre (Torr) | Evaporation                                             | Crucible                                                                                                             | Pomarka |
|-----------------------|--------------------------------|---------------------|----------------------|---------|--------------|---------------|--------------------------|-----------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|---------|
| Material              | Symbol                         | Point °C            | (bulk, g/cm³)        | 2-14110 | <b>10</b> -8 | 10-6          | 10-4                     | Method          | Liner                                                   | Remarks                                                                                                              |         |
| Radium                | Ra                             | 700                 | 5                    | _       | 246          | 320           | 416                      | _               | -                                                       | —                                                                                                                    |         |
| Rhenium               | Re                             | 3180                | 20.53                | —       | 1928         | 2207          | 2571                     | eBeam (good)    | W, graphite                                             | Substrate heating at 600°C improves film properties                                                                  |         |
| Rhenium Oxide         | ReO <sub>3</sub>               | 297                 | 8.2                  | _       | _            | _             | ~100                     | eBeam (good)    | W, graphite                                             | Films produced by reactive evaporation of Re in 10 $^{\rm 3}$ torr $\rm O_{_2}$                                      |         |
| Rhodium               | Rh                             | 1966                | 12.41                | -       | 1277         | 1472          | 1707                     | eBeam (good)    | W, graphite                                             | —                                                                                                                    |         |
| Rubidium              | Rb                             | 38.5                | 1.47                 | _       | -3           | 37            | 111                      | -               | quartz                                                  | —                                                                                                                    |         |
| Rubidium<br>Chloride  | RbCl                           | 715                 | 2.76                 | _       | _            | —             | ~500                     | —               | quartz                                                  | —                                                                                                                    |         |
| Rubidium<br>Iodide    | Rbl                            | 642                 | 3.55                 | _       | _            | _             | ~400                     | _               | quartz                                                  | _                                                                                                                    |         |
| Ruthenium             | Ru                             | 2700                | 12.45                | _       | 1780         | 1990          | 2260                     | eBeam (poor)    | w                                                       | Material spits using eBeam. Sputter deposition is preferred                                                          |         |
| Samarium              | Sm                             | 1072                | 7.54                 |         | 373          | 460           | 573                      | eBeam (good)    | Al <sub>2</sub> O <sub>3</sub>                          | _                                                                                                                    |         |
| Samarium<br>Oxide     | Sm <sub>2</sub> O <sub>3</sub> | 2350                | 7.43                 | _       | _            | _             | _                        | eBeam (good)    | w                                                       | Loses oxygen. Sputter deposition is<br>preferred                                                                     |         |
| Samarium<br>Sulphide  | $Sm_2S_3$                      | 1900                | 5.72                 | _       | _            | _             | _                        | _               | _                                                       | _                                                                                                                    |         |
| Scandium              | Sc                             | 1539                | 2.99                 | -       | 714          | 837           | 1002                     | eBeam (XInt)    | W, Mo, Al <sub>2</sub> O <sub>3</sub>                   | Alloys with Ta                                                                                                       |         |
| Scandium<br>Oxide     | Sc <sub>2</sub> O <sub>3</sub> | 2300                | 3.86                 | _       | _            | -             | ~400                     | eBeam (fair)    | w                                                       | Loses oxygen. Films produced by reactive sputtering in O <sub>2</sub> have been reported                             |         |
| Selenium              | Se                             | 217                 | 4.79                 | _       | 89           | 125           | 170                      | eBeam (good)    | W, Mo, graphite,<br>Al <sub>2</sub> O <sub>3</sub>      | Toxic. Can contaminate vacuum systems                                                                                |         |
| Silicon               | Si                             | 1410                | 2.42                 | 0.712   | 992          | 1147          | 1337                     | eBeam (fair)    | Ta, graphite,<br>BeO                                    | High deposition rates possible. Molten<br>Si can attack graphite liners limiting<br>crucible liner life              |         |
| Silicon Boride        | SiB <sub>6</sub>               | -                   | 2.47                 | -       |              | —             | —                        | —               | —                                                       | —                                                                                                                    |         |
| Silicon Carbide       | SiC                            | 2700                | 3.22                 | -       | -            | —             | 1000                     | eBeam (fair)    | W                                                       | Sputter deposition is the preferred thin film fabrication technique                                                  |         |
| Siliaan Diawida       | 6:0                            | 1610 1710           | 0007                 | 4       | —            | —             | ~1025                    | oDeem (Vint)    | Al <sub>2</sub> O <sub>2</sub> , Ta,                    | Swept beam is critical to avoid hole                                                                                 |         |
| Shicon Dioxide        | 3102                           | 1010-1710           | 2.2-2.1              |         | Influen      | ced by com    | position                 | ebeam (Amit)    | graphite, W                                             | have a shallow melt pool                                                                                             |         |
| Silicon<br>Monoxide   | SiO                            | 1702                | 2.1                  | —       | _            | —<br>sublimes | 850                      | eBeam (fair)    | W, Ta, graphite                                         | Thin films from bulk SiO material has been reported                                                                  |         |
| Silicon Nitride       | Si <sub>3</sub> N <sub>4</sub> | —<br>sublimes       | 3.44                 | _       | _            | _             | ~800                     | _               | _                                                       | Thin films of Si $_{3}N_{3}$ by reactive sputter deposition have been reported                                       |         |
| Silicon Selenide      | SiSe                           | _                   | _                    | _       | _            | _             | 550                      | _               | _                                                       | _                                                                                                                    |         |
| Silicon<br>Sulphide   | SiS                            | —<br>sublimes       | 1.85                 | _       | _            | _             | 450                      | _               | _                                                       | _                                                                                                                    |         |
| Sillicon<br>Telluride | SiTe <sub>2</sub>              | _                   | 4.39                 | _       | _            | _             | 550                      | _               | _                                                       | -                                                                                                                    |         |
| Silver                | Ag                             | 961                 | 10.49                | 0.529   | 847          | 958           | 1105                     | eBeam (XInt)    | W, Al <sub>2</sub> O <sub>3</sub> , Ta,<br>Mo, graphite | Swept beam during melt and<br>focused beam during deposition is<br>recommended for higher deposition<br>rates        |         |
| Silver Bromide        | AgBr                           | 432                 | 6.47                 | _       | -            | —             | ~380                     | —               | _                                                       | —                                                                                                                    |         |
| Silver Chloride       | AgCl                           | 455                 | 5.56                 | _       | _            | _             | ~520                     | —               | _                                                       | _                                                                                                                    |         |
| Silver lodide         | Agl                            | 558                 | 5.67                 | _       | _            | _             | ~500                     | -               | _                                                       | Thin films of Agl fabricated by thermal evaporation have been reported                                               |         |
| Sodium                | Na                             | 97                  | 0.97                 | _       | 74           | 124           | 192                      | _               | quartz                                                  | Use gentle preheat to outgas. Metal reacts violently in air                                                          |         |
| Sodium<br>Bromide     | NaBr                           | 755                 | 3.2                  | -       | _            | _             | ~400                     | -               | -                                                       | -                                                                                                                    |         |
| Sodium<br>Chloride    | NaCl                           | 801                 | 2.16                 | _       | _            | _             | 530                      | _               | _                                                       | Thin films of NaCl fabricated by thermal<br>evaporation in Knudsen cells with<br>quartz crucibles have been reported |         |
| Sodium<br>Cyanide     | NaCN                           | 563                 | -                    | _       | _            | _             | ~550                     | _               | _                                                       |                                                                                                                      |         |

| Material S             | Symbol                         | Melting  | Density       | Z-ratio | ا<br>°C @ Va | lemperatur<br>por Pressu | e<br>ire (Torr) | Evaporation  | Crucible                                             | Pomarke                                                                                                                                   |
|------------------------|--------------------------------|----------|---------------|---------|--------------|--------------------------|-----------------|--------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| material               | Gymbol                         | Point °C | (bulk, g/cm³) | 2-14110 | <b>10</b> -8 | 10-6                     | 10-4            | Method       | Liner                                                | Rendro                                                                                                                                    |
| Sodium<br>Fluoride     | NaF                            | 988      | 2.79          | _       | _            | _                        | ~700            | eBeam (good) | W, Ta, graphite,<br>BeO                              | Use gentle preheat to outgas. NaF thin<br>films produced from powder source<br>material and 230°C substrate heating<br>have been reported |
| Sodium<br>Hydroxide    | NaOH                           | 318      | 2.13          | _       | _            | _                        | ~470            | -            | -                                                    | -                                                                                                                                         |
| Strontium              | Sr                             | 769      | 2.6           | _       | 239          | 309                      | 403             | eBeam (poor) | graphite, quartz                                     | Wets refractory metals. May react strongly in air                                                                                         |
| Strontium<br>Fluoride  | SrF <sub>2</sub>               | 1190     | 4.24          | _       | _            | _                        | ~1000           | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , W, quartz           | Thin films of SrF <sub>2</sub> produced by eBeam<br>and thermal evaporation have been<br>reported                                         |
| Strontium<br>Oxide     | SrO                            | 2460     | 4.7           | _       | _            |                          | 1500            | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub>                       | Loses oxygen. Reacts with W and Mo                                                                                                        |
| Strontium<br>Sulphide  | SrS                            | >2000    | 3.7           | _       | _            | _                        | —               | _            | _                                                    | Decomposes                                                                                                                                |
| Sulphur                | S <sub>8</sub>                 | 115      | 2             | —       | 13           | 19                       | 57              | eBeam (poor) | quartz                                               | Can contaminate vacuum systems                                                                                                            |
| Tantalum               | Та                             | 2996     | 16.6          | _       | 1960         | 2240                     | 2590            | eBeam (XInt) | graphite                                             | High melting point of Ta limits crucible<br>liner selection. High vacuum is required<br>to mitigate oxygen incorporation in films         |
| Tantalum<br>Boride     | TaB <sub>2</sub>               | 3000     | 12.38         | -       | —            | -                        | -               | _            | -                                                    | -                                                                                                                                         |
| Tantalum<br>Carbide    | TaC                            | 3880     | 14.65         | _       | _            | _                        | ~2500           | -            | -                                                    | -                                                                                                                                         |
| Tantalum<br>Nitride    | TaN                            | 3360     | 16.3          | _       | _            | _                        | _               | eBeam (fair) | graphite                                             | Thin films of TaN can be produced by reactive evaporation in $10^{-3}$ torr N $_2$                                                        |
| Tantalum<br>Pentoxide  | Ta <sub>2</sub> O <sub>5</sub> | 1800     | 8.74          | -       | 1550         | 1780                     | 1920            | eBeam (good) | graphite, Ta                                         | Swept beam to avoid hole drilling. A thin<br>Ti layer will improve adhesion to the<br>substrate                                           |
| Tantalum<br>Sulphide   | TaS <sub>2</sub>               | 1300     | _             | _       | _            | _                        | _               | _            | _                                                    | -                                                                                                                                         |
| Technetium             | Тс                             | 2200     | 11.5          | —       | 1570         | 1800                     | 2090            | —            | -                                                    | -                                                                                                                                         |
| Tellurium              | Те                             | 452      | 6.25          | _       | 157          | 207                      | 277             | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , quartz,<br>graphite | Wets refractory metals                                                                                                                    |
| Terbium                | Tb                             | 1357     | 8.27          | _       | 800          | 950                      | 1150            | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , graphite,<br>Ta     | Thin films produced by sputter<br>deposition and thermal evaporation<br>have also been reported                                           |
| Terbium<br>Fluoride    | $TbF_3$                        | 1176     | -             | -       | _            | _                        | ~800            | —            | —                                                    | Sputter deposition is preferred                                                                                                           |
| Terbium Oxide          | Tb <sub>2</sub> O <sub>3</sub> | 2387     | 7.87          | _       | _            | _                        | 1300            | -            | -                                                    | Thin films prepared by pulsed laser deposition have been reported                                                                         |
| Terbium<br>Peroxide    | Tb <sub>4</sub> O <sub>7</sub> | 2340     | 7.3           | -       | -            | -                        |                 | _            | -                                                    | Annealing of $Tb_2O_3$ films at 800°C in air to produce stable $Tb_4O_7$ has been reported                                                |
| Thallium               | TI                             | 302      | 11.85         | _       | 280          | 360                      | 470             | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , quartz,<br>graphite | Thallium and its compounds are very toxic. Wets freely                                                                                    |
| Thallium<br>Bromide    | Tlbr                           | 480      | 7.56          | _       | _            |                          | ~250            | _            | _                                                    | Thermal evaporation of TIBr thin films<br>has been reported                                                                               |
| Thallium               |                                |          |               |         | _            |                          | ~150            |              |                                                      |                                                                                                                                           |
| Chloride               | TICI                           | 430      | 7             | _       |              | sublimes                 |                 | _            | _                                                    | -                                                                                                                                         |
| Thallium<br>Iodide (ß) | ТΙΙ                            | 440      | 7.09          | _       | _            | —                        | ~250            | eBeam (poor) | Al <sub>2</sub> O <sub>3</sub> , quartz              | Low stress thin films can be produced<br>by eBeam evaporation with a substrate<br>temperature of 100°C                                    |
| Thallium Oxide         | TI <sub>2</sub> O <sub>3</sub> | 717      | 9.65          | —       | _            | _                        | 350             | _            | _                                                    | Disproportionates at 850°C to TI <sub>2</sub> O                                                                                           |
| Thorium                | Th                             | 1875     | 11.7          | _       | 1430         | 1660                     | 1925            | eBeam (XInt) | W, Ta, Mo                                            | Toxic and mildly radioactive                                                                                                              |
| Thorium<br>Bromide     | ThBr₄                          | _        | 5.67          | _       | _            | —<br>sublimes            |                 | _            | -                                                    | _                                                                                                                                         |
| Thorium<br>Carbide     | ThC <sub>2</sub>               | 2273     | 8.96          | —       | —            | _                        | ~2300           | _            | —                                                    | _                                                                                                                                         |
| Thorium<br>Dioxide     | ThO <sub>2</sub>               | 3050     | 10.03         | _       | _            | _                        | ~2100           | eBeam (good) | w                                                    | Stable stoichiometric films of ThO <sub>2</sub> produced from powdered source material have been reported                                 |

| Matorial                | Symbol                         | Melting  | Density       | 7 ratio | ٦<br>°C @ Va     | Femperatur<br>por Pressu | e<br>ire (Torr) | Evaporation  | Crucible                                            | Pomarka                                                                                                                                    |
|-------------------------|--------------------------------|----------|---------------|---------|------------------|--------------------------|-----------------|--------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| material                | Gymbol                         | Point °C | (bulk, g/cm³) | 2-10110 | 10 <sup>-8</sup> | 10-6                     | 10-4            | Method       | Liner                                               | Kennarko                                                                                                                                   |
| Thorium<br>Fluoride     | $ThF_4$                        | 1110     | 6.3           | _       | _                | _                        | ~750            | eBeam (fair) | Ta, Mo, graphite                                    | Use gentle preheat to outgas.<br>Substrate temperature of 175°C<br>improves film adhesion and quality                                      |
| Thorium<br>Oxyfluoride  | ThOF <sub>2</sub>              | 900      | 9.1           | _       | _                | _                        | _               | eBeam (poor) | W, Ta, Mo,<br>graphite                              | Does not evaporate stoichiometrically, resulting films are primarily ThF <sub>4</sub>                                                      |
| Thorium<br>Sulphide     | ThS <sub>2</sub>               | -        | 6.8           | -       | _                | -                        | —               | —            | —                                                   | -                                                                                                                                          |
| Thulium                 | Tm                             | 1545     | 9.32          | _       | 461              | 554<br>sublimes          | 680             | eBeam (good) | Al <sub>2</sub> O <sub>3</sub>                      | _                                                                                                                                          |
| Thulium Oxide           | Tm <sub>2</sub> O <sub>3</sub> | _        | 8.9           | _       | _                | -                        | 1500            | _            | _                                                   | Thin films of Tm <sub>2</sub> O <sub>3</sub> by eBeam evaporation and MBE have been reported                                               |
| Tin                     | Sn                             | 232      | 7.75          | 0.724   | 682              | 807                      | 997             | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , Ta,<br>graphite, W | High deposition rates possible, but<br>uniformity may suffer. Slow power ramp<br>to mitigate cavitation of melt pool                       |
| Tin Oxide               | SnO <sub>2</sub>               | 1127     | 6.95          | _       | _                | —<br>sublimes            | ~1000           | eBeam (XInt) | Al <sub>2</sub> O <sub>3</sub> , quartz             | Substrate temperature above 200°C improves film crystallinity                                                                              |
| Tin Selenide            | SnSe                           | 861      | 6.18          | _       | -                | _                        | ~400            | _            | —                                                   | Stoichiometric thin films of SnSe<br>produced by thermal evaporation of<br>powdered source material have been<br>reported                  |
| Tin Sulphide            | SnS                            | 882      | 5.08          | _       |                  | _                        | ~450            | eBeam (poor) | quartz, W                                           | Thin films prepared by eBeam<br>evaporation of SnS powder and reactive<br>co-evaporation of Sn and S have been<br>reported                 |
| Tin Telluride           | SnTe                           | 780      | 6.44          | _       |                  | -                        | ~450            | eBeam (poor) | quartz                                              | Thin films of SnTe produced with eBeam<br>evaporation at a substrate temperature<br>of 300°C have been reported                            |
| Titanium                | Ti                             | 1675     | 4.5           | 0.628   | 1067             | 1235                     | 1453            | eBeam (XInt) | W, graphite, TiC                                    | Films are very adherent to almost any substrate                                                                                            |
| Titanium Boride         | TiB <sub>2</sub>               | 2980     | 4.5           | _       | _                | _                        | _               | —            | _                                                   | Sputter deposition is the preferred thin<br>film fabrication technique                                                                     |
| Titanium<br>Carbide     | TiC                            | 3140     | 4.93          | _       | _                | _                        | ~2300           | eBeam (fair) | W, graphite                                         | eBeam evaporation of TiC thin films with<br>and without ion beam assistance have<br>been reported                                          |
| Titanium<br>Dioxide     | TiO2                           | 1640     | 4.29          | _       | _                | _                        | ~1300           | eBeam (good) | W, graphite, Ta                                     | Stoichiometric thin films of TiO <sub>2</sub> have<br>been produced from powder source<br>material and a substrate temperature<br>of 600°C |
| Titanium<br>Monoxide    | TiO                            | 1750     | _             | _       |                  | —                        | ~1500           | eBeam (good) | W, graphite, Ta                                     | Outgas with gentle preheat prior to deposition                                                                                             |
| Titanium Nitride        | TiN                            | 2930     | 5.43          | _       | _                | _                        | _               | eBeam (good) | W, graphite, TiC                                    | Thin films have been prepared by reactive evaporation of Ti in $\rm N_2$ partial pressure                                                  |
| Titanium<br>Sesquioxide | Ti <sub>2</sub> O <sub>3</sub> | 2130     | 4.6           | _       | I                | _                        | Ι               | eBeam (good) | W, Ta, graphite                                     | Stoichiometric films have been produced by reactive evaporation of $Ti_2O_3$ powder in 2.5 x 10 <sup>-4</sup> torr $O_2$                   |
| Tungsten                | w                              | 3410     | 19.3          | 0.163   | 2117             | 2407                     | 2757            | eBeam (good) | W                                                   | Long, slow preheat is required to<br>condition the source material. Raster<br>the electron beam to avoid hole drilling                     |
| Tungsten<br>Boride      | WB <sub>2</sub>                | 2900     | 12.75         | _       | _                | _                        | _               | —            | -                                                   | —                                                                                                                                          |
| Tungsten<br>Carbide     | W <sub>2</sub> C               | 2860     | 17.15         | _       | 1480             | 1720                     | 2120            | eBeam (good) | W, graphite                                         | Thin films prepared by eBeam<br>evaporation of powdered source<br>material have been reported. RF<br>Sputter deposition is widely reported |
| Tungsten<br>Telluride   | WTe <sub>3</sub>               | _        | 9.49          | _       | _                | _                        | _               | —            | _                                                   | _                                                                                                                                          |
| Tungsten<br>Trioxide    | WO <sub>3</sub>                | 1473     | 7.16          | _       | —                | —<br>sublimes            | 980             | eBeam (good) | W                                                   | Thin films are most commonly prepared using $WO_3$ powder source material                                                                  |
| Uranium                 | U                              | 1132     | 19.07         | _       | 1132             | 1327                     | 1582            | eBeam (good) | W, Mo, graphite                                     | Depleted uranium thin films oxidize easily even in low partial pressure of $O_2$                                                           |
| Uranium<br>Carbide      | UC <sub>2</sub>                | 2260     | 11.28         | —       | —                | _                        | 2100            | _            | _                                                   | _                                                                                                                                          |

| Material                     | Symbol                                         | Melting    | Density       | 7-ratio | Temperature<br>°C @ Vapor Pressure (Torr) | Evaporation     | Crucible | Pemarke      |                                                         |                                                                                                                                                              |
|------------------------------|------------------------------------------------|------------|---------------|---------|-------------------------------------------|-----------------|----------|--------------|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| material                     | Cymbol                                         | Point °C   | (bulk, g/cm³) | 2-10110 | 10-8                                      | 10-6            | 10-4     | Method       | Liner                                                   | Kendika                                                                                                                                                      |
| Uranium<br>Dioxide           | UO2                                            | 2176       | 10.9          | _       | _                                         | _               |          | eBeam (fair) | w                                                       | Stoichiometric thin films produced<br>by reactive evaporation of depleted<br>uranium in $O_2$ partial pressure have<br>been reported                         |
| Uranium<br>Fluoride          | $UF_4$                                         | ~1000      | -             | _       |                                           | -               | 300      | -            | -                                                       | Thin films fabricated by sputter deposition of depleted uranium by F <sup>-</sup> ions has been reported                                                     |
| Uranium Oxide                | U <sub>3</sub> O <sub>8</sub>                  | Decomposes | 8.3           | _       | _                                         | -               | -        | —            | -                                                       | Thin films produced by reactive sputter deposition of depleted uranium targets in $O_2$ have been reported.                                                  |
| Uranium<br>Phosphide         | UP <sub>2</sub>                                | -          | 8.57          | _       | -                                         | -               | 1200     | -            | -                                                       | -                                                                                                                                                            |
| Uranium<br>Sulphide          | $U_2S_3$                                       | _          | _             | _       | _                                         | —               | 1400     | _            | _                                                       | _                                                                                                                                                            |
| Vanadium                     | v                                              | 1890       | 5.96          | _       | 1162                                      | 1332            | 1547     | eBeam (XInt) | W, graphite, Ta                                         | Wets Mo. eBeam evaporation is<br>preferred                                                                                                                   |
| Vanadium<br>Boride           | VB <sub>2</sub>                                | 2400       | 5.1           | _       |                                           | _               | _        | _            | _                                                       | _                                                                                                                                                            |
| Vanadium<br>Carbide          | VC                                             | 2810       | 5.77          | _       |                                           | _               | ~1800    | _            |                                                         | _                                                                                                                                                            |
| Vanadium<br>Dioxide          | VO <sub>2</sub>                                | 1967       | 4.34          | _       |                                           |                 | ~575     | eBeam (poor) | W, graphite                                             | Difficult to maintain stoichiometry by<br>eBeam evaporation, sputter deposition<br>is preferred                                                              |
| Vanadium<br>Nitride          | VN                                             | 2320       | 6.13          | -       | —                                         | -               | -        | -            | -                                                       | -                                                                                                                                                            |
| Vanadium<br>Pentoxide        | V <sub>2</sub> O <sub>5</sub>                  | 690        | 3.36          | -       | _                                         | _               | ~500     | eBeam (good) | W, graphite                                             | Thin films prepared from powdered source material are nearly stoichiometric. Post process annealing at 280° in $O_2$ restores full stoichiometry             |
| Vanadium<br>Silicide         | VSi <sub>2</sub>                               | 1700       | 4.42          | _       | _                                         | _               | _        | _            | _                                                       | —                                                                                                                                                            |
| Ytterbium                    | Yb                                             | 824        | 6.98          | _       | 520                                       | 590<br>sublimes | 690      | eBeam (good) | Al <sub>2</sub> O <sub>3</sub> , W, Ta                  | Store Yb evaporation source material in $N_2$ desiccator to mitigate oxidation                                                                               |
| Ytterbium<br>Fluoride        | YbF <sub>3</sub>                               | 1157       | 8.17          | _       | _                                         | _               | ~800     | eBeam (fair) | Ta, Mo, W                                               | Preheat slowly and evaporate at<br>≤ 10Å/sec to mitigate dissociation                                                                                        |
| Ytterbium<br>Oxide           | Yb <sub>2</sub> O <sub>3</sub>                 | 2346       | 9.17          | _       | _                                         | —<br>sublimes   | ~1500    | eBeam (fair) | Al <sub>2</sub> O <sub>3</sub> , W, Ta                  | Thin films produced by reactive<br>evaporation in 8 x 10- <sup>5</sup> torr O <sub>2</sub> have<br>been reported.                                            |
| Yttrium                      | Y                                              | 1509       | 4.48          | _       | 830                                       | 973             | 1157     | eBeam (XInt) | W, Al <sub>2</sub> O <sub>3</sub>                       | Substrate heating at 300°C improves adhesion and film smoothness                                                                                             |
| Yttrium<br>Aluminum<br>Oxide | Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub> | 1990       | _             | _       | _                                         | _               | _        | eBeam (good) | W, Al <sub>2</sub> O <sub>3</sub>                       | Films prepared from powdered source<br>material, typically with dopants. YAG<br>films post deposition annealed at<br>1100°C in vacuum improves crystallinity |
| Yttrium<br>Fluoride          | ${\sf YF}_3$                                   | 1387       | 4.01          | _       | _                                         | _               | _        | eBeam (good) | W, Ta, Mo, Al <sub>2</sub> O <sub>3</sub>               | eBeam evaporation at a rate of<br>≤ 10Å/sec and substrate temperature<br>of 200°C produces crystalline films with<br>good adhesion                           |
| Vttrium Oxide                | хo                                             | 2680       | 4 84          |         | —                                         | —               | ~2000    | eBeam (good) | aranhite W                                              | eBeam evaporated films can be oxygen<br>deficient, post deposition annealing                                                                                 |
|                              | 1203                                           | 2000       | 1.01          |         |                                           | sublimes        |          | cocan (good) | graphic, w                                              | in 10 <sup>-3</sup> torr O <sub>2</sub> at 525°C results in stoichiometric films.                                                                            |
| Zinc                         | Zn                                             | 419        | 7.14          | 0.514   | 127                                       | 177             | 250      | eBeam (XInt) | W, Al <sub>2</sub> O <sub>3</sub> , quartz,<br>graphite | Evaporates well under a wide range of<br>conditions                                                                                                          |
| Zinc<br>Antimonide           | $Zn_3Sb_2$                                     | 546        | 6.3           | _       | _                                         | _               | _        |              |                                                         | _                                                                                                                                                            |
| Zinc Bromide                 | ZnBr <sub>2</sub>                              | 394        | 4.22          | —       | _                                         | -               | ~300     | -            |                                                         | -                                                                                                                                                            |
| Zinc Fluoride                | ZnF <sub>2</sub>                               | 87         | 4.84          | _       | _                                         | _               | ~800     | eBeam (fair) | quartz, W                                               | Thin films prepared by eBeam<br>evaporation of powdered source<br>material have been reported. Substrate<br>heating at 400°C improved crystallinity          |
| Zinc Nitride                 | Zn <sub>3</sub> N <sub>2</sub>                 | -          | 6.22          | -       | -                                         | -               | —        | -            | -                                                       | Reactive sputter deposition in N <sub>2</sub> has been reported                                                                                              |

| Material              | Symbol             | Melting<br>Point °C | Density<br>(bulk, g/cm³) | Z-ratio | Temperature<br>°C @ Vapor Pressure (Torr) |              |       | Evaporation  | Crucible             | Remarks                                                                                                                                                                                                  |
|-----------------------|--------------------|---------------------|--------------------------|---------|-------------------------------------------|--------------|-------|--------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                       |                    |                     |                          |         | 10-8                                      | <b>10</b> -6 | 10-4  | Method       | Liner                |                                                                                                                                                                                                          |
| Zinc Oxide            | ZnO                | 1975                | 5.61                     | _       | _                                         | _            | ~1800 | eBeam (fair) | quartz, W            | Quality thin films fabricated using<br>eBeam evaporation at a rate of 8Å/sec<br>and a substrate temperature of 300°C<br>has been reported                                                                |
| Zinc Selenide         | ZnSe               | 1526                | 5.42                     | _       | _                                         | _            | 660   | eBeam (fair) | W, Ta, Mo,<br>quartz | Deposition rate of ≤ 5 Å/sec. Thin<br>films are polycrystalline and a substrate<br>temperature of 300°C improves<br>adhesion and size of crystallites                                                    |
|                       |                    | 1830                | 4.09                     | _       | -                                         | -            | ~800  |              |                      | Thin films produced by eBeam evaporation display a preferred (111)                                                                                                                                       |
| Zinc Sulphide         | ZnS                |                     |                          |         | sublimes                                  |              |       | eBeam (good) | W, Ia, Mo,<br>quartz | orientation and best optical properties<br>result from a 400°C substrate<br>temperature                                                                                                                  |
| Zinc Telluride        | ZnTe               | 1238                | 6.34                     | _       | _                                         | -            | ~600  | eBeam (fair) | W, Ta, Mo,<br>quartz | Stoichiometric thin films produced<br>by eBeam evaporation have good<br>crystallinity with a substrate temperature<br>of 230°C. Optical properties are<br>thickness dependent                            |
| Zircon                | ZrSiO <sub>4</sub> | 2550                | 4.56                     | _       | _                                         | _            |       | -            | _                    | _                                                                                                                                                                                                        |
| Zirconium             | Zr                 | 1852                | 6.4                      | _       | 1477                                      | 1702         | 1987  | eBeam (XInt) | W, quartz            | Alloys with W. Thin films oxidize readily                                                                                                                                                                |
| Zirconium<br>Boride   | ZrB <sub>2</sub>   | 3040                | 6.08                     | _       |                                           | -            | _     | eBeam (good) | W, quartz            | Stoichiometric films prepared by<br>co-evaporation of Zr and B have been<br>reported                                                                                                                     |
| Zirconium<br>Carbide  | ZrC                | 3540                | 6.73                     | -       |                                           | -            | ~2500 | eBeam (poor) | graphite             | Quality thin films of ZrC using pulsed laser deposition have been reported                                                                                                                               |
| Zirconium<br>Nitride  | ZrN                | 2980                | 7.09                     |         | _                                         | _            | _     | -            | -                    | Thin films of ZrN prepared by $N_2$ ion assisted evaporation of Zr have been reported                                                                                                                    |
| Zirconium<br>Oxide    | ZrO <sub>2</sub>   | 2700                | 5.49                     | _       | —                                         | -            | ~220  | eBeam (good) | W, graphite          | Reactive evaporation in $10^3$ torr O <sub>2</sub><br>produce as deposited stoichiometric<br>films. For eBeam evaporated films, post<br>deposition annealing in O <sub>2</sub> restores<br>stoichiometry |
| Zirconium<br>Silicide | ZrSi <sub>2</sub>  | 1700                | 4.88                     | _       | _                                         | _            | _     | _            | _                    | eBeam evaporated Zr on Si substrates<br>forms ZrSi₂ following post deposition<br>thermal annealing at 600°C                                                                                              |